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Abstract 
A novel approach called Forward-Inverse Adaptive 
Techniques (FIAT) for reservoir characterization is developed 
and applied to three representative exploration cases. Inverse 
modeling refers to the determination of the entire reservoir 
permeability under steady state single-phase flow regime, 
given only field permeability, pressure and production well 
measurements. FIAT solves the forward and inverse partial 
differential equations (PDEs) simultaneously by adding a 
regularization term and filtering pressure gradients. An 
implicit adaptive-grid, Galerkin, numerical scheme is used to 
numerically solve the set of PDEs subject to pressure and 
permeability boundary conditions. Three examples are 
presented. Results from all three cases demonstrate attainable 
and reasonably accurate solutions and, more importantly, 
provide insights into the consequences of data undersampling. 

 
Introduction 
The problem of reservoir characterization has attracted a 
remarkable research effort, particularly over the last 20 years. 
Research in the area of site characterization has focused 
mainly on development of inverse algorithms1,2,3. While our 
understanding of the problem has improved, the problem is 
generally considered as yet unsolved with no fully proven 
technique, there are clear ideas of where the weak points are 
and what remedies might be. 

It is widely recognized now that natural heterogeneity and 
the large spatial variability of the permeability and porosity 
predominantly control the flow field and hence forecasting of 
reservoir performance, optimization of management strategies, 
placement of infill and production wells, and other related 
practical reservoir engineering decisions. Oil reservoirs are 
usually undersampled relative to the spatial variability of the 
porous media properties that may also vary largely in 
magnitude over very short distances. As a result, there is not 

enough point measurements to provide a comprehensive and 
detailed characterization. Clearly, however, scant knowledge 
of essential reservoir parameters and operational data does not 
minimize the potential such limited information can provide if 
utilized consistently and maximally.   

Most literature on the subject dealing with the solution of 
the inverse problem appears to favor the optimal control 
theory approach, and the great majority of that work reduces, 
essentially, to a least-square minimization technique on the 
pressure variable constrained by the time-dependent 
production. Fewer works have gone further to incorporate 
additional information such as geophysical measurements4. 
Still other researchers solve the mass balance equation for K 
given P, commonly called the inverse PDE problem, and 
ensuing methods are called “direct” approaches5. For some 
pressure conditions and geological reservoir settings, 
decoupling the forward model from the inverse one, in the 
direct approach is probably acceptable. But for heterogeneous 
geological settings and for reservoirs under extreme stresses, 
the decoupling assumption usually does not hold and the direct 
inverse solution requires accurate pressure gradient 
determinations which are extremely difficult to obtain because 
measurements are sparsely available and at disparate scales. 

It is pertinent to cite the work of Zhu6 in which a history 
matching procedure was suggested through cyclic solution of 
forward and inverse system of equations. Zhu’s approach 
resembles the approach presented here, though the details are 
markedly different. The iterative scheme in Zhu’s approach 
starts by solving the forward problem in the pressure assuming 
a known permeability. Then, a new system of algebraic 
equations in K is constructed from the forward system by 
switching the role of P and K (K becomes the unknown 
whereas P is given). This new system represents then the 
inverse portion in each cycle. Any additional constraints on K 
are invoked in this portion through the modification of the 
coefficient matrix. After solving for K, the cycle is repeated 
until the calculated pressure is satisfactorily matched with the 
measured one. Notice that the construction of the inverse 
system in this approach is in itself not new; for instance Sun5 
describes a similar procedure to extract a set of inverse 
equations from forward ones; what is interesting here is its 
utilization alongside the forward system. In contrast to Zhu’s 
approach, the inverse portion in this work derives its Galerkin 
equations directly from the inverse PDE (in lieu of switching 
the roles of P and K in the Galerkin equations for the forward 
PDE)7. In essence, the solution to the inverse PDE is implicitly 
coupled to the forward one through a nearly degenerate set of 
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partial differential equations. Although, this coupling usually 
creates a highly nonlinear and numerically challenging system 
of partial differential equations; on the other hand, it ensures 
that the solution of the inverse problem is, at least, always 
consistent with the forward solution everywhere in the 
reservoir. The present paper is composed of 5 sections. 
Section 2 states the inverse problem. Section 3 presents the 
forward inverse algorithm and its numerical solution. Section 
4 covers the proof-of-concept examples and applications. All 
findings are summarized in Section 5. 

 
Statement of the problem 
To emphasize basic concepts without loss of generality, the 
steady-state single-phase flow in a confined reservoir is 
described by the following equation: 

∇⋅[K(x) ∇P(x)] = 0…………………..…...………….….(1) 

K is the permeability of the reservoir. P is the reservoir 
pressure. x denotes a point in space, and boldface denotes 
vectors. A reservoir is characterized by borehole 
measurements of permeability, pressure, and production rate. 
These measurements are dispersed in the domain and they are 
measurement-scale depend. The domain is denoted by Ω, and 
its boundaries by ∂Ω. The thickness of the aquifer is assumed 
known from measurements, as are pumping and injection 
rates. Equation (1) is called the forward equation or the 
pressure equation. The forward problem assumes that K(x) is 
known throughout Ω and P(x) is the only unknown to be 
determined, given a set of boundary conditions of first and/or 
second type. Equation (1) is elliptic and its numerical solution 
is easy to attain. In reality, however, K(x) is only known at a 
limited number of sparse measurement locations in Ω. Other 
measurements such as pressure and injection and/or 
production rates are also available at different or same K-
measurement locations. Inverting for the permeability K(x), 
equation (1) becomes hyperbolic and presents serious 
numerical challenges. In this case (1) is referred to as the 
inverse equation or the K-equation. The inverse problem is an 
improperly or ill-posed problem5 and some modifications need 
to be considered to assure convergence to a stable solution of 
(1). Mathematically speaking, the inverse problem is a Cauchy 
one. It has been shown that the inverse problem has a unique 
stable solution when P(x) is known in the entire domain and a 
“K-boundary” condition is given along a Cauchy line, l, 
crossing every streamline in Ω. Cauchy solutions did not 
attract the attention of reservoir practioners because K-data 
along l are hardly ever available in practice. Theoretical 
advances have been made8,9,10 but without successful 
application. Reservoir practitioners have scattered their 
attention toward direct or indirect techniques such as gradient 
techniques, minimization or optimization techniques, and 
more recently stochastic and geostatistical techniques. 
Regrettably, the inverse problem was always considered 
independent from the forward one, but constrained by 
heuristic and interpolation techniques that led to 
inconsistencies between the forward and the inverse problem 
solutions. Consequently, our goal is twofold. First, to assure 
consistency between both problems, we aim to simultaneously 
solve the inverse and forward problems, through an implicit 
scheme using an adaptive Galerkin FE technique. Second, we 
intend to show that by moving the Cauchy “lines” to the 

production/injection wells and by unspecifying making the K-
boundary on ∂Ω a “non-specified” boundary, we can reach a 
more appreciable physical solution to the problem. 
 
Forward-Inverse Adaptive Algorithm 
Let {PX}, {KX}, {QX} denote finite sets of Cartesian 
coordinates at which measurements of pressure, permeability, 
and production are collected, respectively. The 3D Cartesian 
coordinates are denoted by {(jx1,i,

jx2,i,
jx3,i), i=1,2,...,nj, and 

j=P,K,Q}. nj are the number of measurements of j-type. 
Without loss of generality, we treat the case where all nj are 
equal. This ‘fixed point set’ becomes part of the nodal 
assembly in a finite elements solution of the governing PDEs.  
 
Forward Problem. The forward problem consists of solving 
(1) subject to given P measurements at {PX} and pressure and 
flux boundary conditions on ����7KH�RXWFRPH�RI�WKLV�VWHS�LV�3�

and thus the estimation of pressure gradients ∇P(x) for the 
inverse problem step. Sparsely measured pressure data (as 
well as sparse permeability data) present both the major 
problem and the reason for permeability parameter estimation. 
Because of the lack of complete knowledge of P everywhere 
in ���LW�IROORZV��WKDW�SUHVVXUH�JUDGLHQWV�DUH�QRW�GHILQHG�LQ�DOO�RI�

���DQG�WKXV�D�3'(�GRHV�QRW�H[LVW�IRU�.��$Q�LPPHGLDWH�ZD\�WR�

proceed is to find an interpolating surface that passes through 
all of the pressure datum points.  
 
Spatial Filtering. Because a vast number of interpolating 
surfaces often exist, the inverse solution, if found, will often 
yield to unphysical permeability solution unless further 
constraints are imposed. The cause of this difficulty is readily 
explained: most trial interpolating surfaces that pass through 
the measured pressure datum points form relative maxima or 
minima ‘spikes’ on the set {PX}, thereby violating the 
maximum-principle for elliptic differential equations11. The 
interpolating surfaces must therefore be selected judiciously—
which is the starting point for the developments in this work. 
Because stochastic methods need a large and sufficient 
number of data for statistical inference, geostatistical 
characterization and interpolation of P away from the data 
locations, one can resort to a classic spatial filtering technique 
of the gradients. Indeed, much of the important information 
content from pressure measurements, no matter how sparse or 
devoid of high spatial frequency information they may be, 
resides in the gradients and Laplacians of the pressure. The 
objective of this step is to extract as much information as 
possible by performing spatial filtering that is commensurate 
with the spatial intervals between the measured data12. Such 
filtering is also required to produce a smoothed map pressure 
that, effectively, satisfies the maximum principle for elliptic 
differential equations. The clamping imposed on P is therefore 
relaxed at the measurement points by solving the following 
PDE for ∇P on �� 

∆[∇PS(x)]+α(∇P(x)-∇PS(x))=0   in  Ω…………….…....(2) 

The Laplacian operation in the first term of equation (2) is 
a band-pass filter function13. It does not have a sharp cut-off at 
any spatial frequency; so some latitude can be exercised in 
Laplacian smoothing with this factor in mind. The second term 
in equation (2) can be viewed as a penalty function that 
controls the amount of smoothing of P through proper choices 
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of the parameter α. Clearly, very large α yields a PS that 
hardly differs from P; that is, very little smoothing is done. 
And vice versa, as α approaches zero, PS approaches a 
harmonic solution in ���%XW�WRR�PXFK�VPRRWKLQJ�LV�REYLRXVO\�

undesirable when it loses (by aliasing) significant amounts of 
information. The rationale for this step is to find the major 
regional driven gradients. The solution PS is then used to 
approximate ∇P(x) ≈ ∇PS(x) that is needed for the inverse 
problem step.  

 
Inverse Problem. ∇PS(x) is the desired smoothed pressure 
gradient, relative to less-smooth gradients ∇P(x), the 
following inverse problem PDE is introduced and solved for 
K(x) in �� 

∇⋅[K(x) ∇PS(x)]+ ε∆K(x)=0   in  Ω…………………….(3) 

This modified equation (3), through the addition of the 
regularizing term ε∆K, is in principle an elliptic equation. But 
in practice it is essentially a hyperbolic PDE. The solution to 
equation (3) can then be completely determined, provided that 
K is given along some non-characteristic curve, l, within ��

and such that the continuum of characteristics emanating from 
l spans the entire domain ��� )RU� EUHYLW\�� DQ� l-curve that 
satisfies these conditions will be referred to as an admissible l-
curve. If no admissible l-curve exists for the entire domain ���

then one must partition ��LQWR�WZR�RU�PRUH�VXEGRPDLQV��HDFK�

of which possesses its own admissible l-curve. No further 
specification of K along the remainder of ���LV�UHTXLUHG��6XFK�

a ‘non specified’ boundary condition is exacted by recycling 
integrands in all boundary integrals that are produced from 
integration by parts in the numerical solution process14. That 
is, whatever expression appears in a boundary integral is 
reused, as is, in forming the matrix of the Galerkin 
approximation equations. 

 
Forward-Inverse Adaptive Techniques (FIAT). To assure 
consistency between the forward and the inverse problem, we 
propose to implicitly and simultaneously solve equations (1)-
(3) using an adaptive Galerkin finite element method. The 
system of PDEs is highly nonlinear; in addition, we are 
required to “stage” the regularization term, ε, to guarantee a 
stable numerical scheme of the system of PDEs. 

 
Boundary Conditions.  In the present study we distinguish 
two classes of boundary conditions (BCs):  

1) Outer-domain BCs are dictated mainly by the 
geological reservoir delineations. For the pressure 
equation (1), such BCs are specified pressures (i.e., 
value(P)) or fluxes (i.e., natural(P)). For the K-
equation (2), similar BCs are of unspecified (open) 
BC-type, or if the permeability is known over a 
portion of ����D�VSHFLILHG�%&�LV�VWUDLJKWIRUZDUG��L�H���

value(K)). It is worthwhile to note that because of the 
reciprocity between K and ∇P, a null flux BC leads to 
a zero “K-flux” (i.e., natural(K)=0). 

2) Inner-domain BCs are dictated by P, K, and Q field 
measurements. P and K measurements are scale 
dependent. Also, whenever the triplet {P,K,Q} are 
given at the same location they must satisfy Darcy’s 
Law. Permeability and pressure are not point-function 

but set-function measurements and their measurement 
support differs from one measurement to another15. 
Because fluxes integrate streamlines emanating from 
as far as the reservoir outer boundaries, they are 
considered regional measurements. Therefore, flux 
measurement support is larger than P and K 
measurement supports. Often the extent of K 
heterogeneity is larger than pressure monitoring or 
production/injection well diameters. If we denote by 
ωP, ωK, and ωQ, the measurement support of P, K, 
and Q, respectively, we conjecture that:  

ωP ⊆ ωK ⊆ ωQ ⊂ Ω…………………………..…………..(4) 

Based on the above support hierarchy the triplet 
{P,K,Q} is assigned around the data {PX}, {KX}, 
{QX} point-location center. Consequently, three 
fictitious radii, ρi, are introduced, and each 
corresponds to ωi. The P and K measurements are 
specified-value BCs assigned on the perimeter, or the 
vertical lateral surface of ωQ in 2D or 3D cases, 
respectively. The flux measurements, however, are 
specified-flux BCs. Whenever {P, K, Q} are given at 
any point it results in hyper-point data. While P, and 
K are used as BCs around the well, fluxes are used as 
constraints in FIAT. At each production or injection 
well the following condition has to be satisfied: 

Q
i

2

i n,,1i,Qrd
r

P
K
iQ

L==θ
∂
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πρ

………...…...….…..(5) 

Equation (5) is used to constrain the P and K 
solutions in the neighborhood of the well. FIAT 
easily incorporates constraints using Lagrangian 
multiplier technique16. Because P, K, and Q can be 
measured at the same well and they embed different 
measurement supports, they have to obey Darcy’s 
law. By fixing two elements of the triplet, the third is 
determined using the following analytical solution for 
radial flow near a point source/sink in an infinite 
domain: 






 ρ
π

+=ρ
Well

P
Well r

ln
K2

|Q|
PP

P
…………...…………..(6) 

where PρP is the projected pressure at radius ρP from 
the well, Pwell is the pressure at the well (point 
measurement), and rwell is the well radius. 

 
Initial Conditions. The system of PDEs (1)-(3) is obviously 
highly nonlinear in the unknown variables P, and K. 
Consequently it is important to start with good initial guess 
estimates of P and K for the Newton-Raphson liberalization 
process used in the numerical PDE solver. The procedure 
consists of decoupling (1) and (3) and solving them separately. 
The P initial trial is selected based on solving equation (1) 
subject to outer and inner P-BCs. Similarly, the K initial trial 
is obtained by solving only the K-equation with K specified 
only at the measurement locations. The outer-BCs are 
maintained at measured K for any given location or along any 
portion of ∂Ω, null “K-flux”, if any null flux BC is specified, 
and unspecified K BC on the rest of ∂Ω. 
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Numerical Solution. Galerkin finite element method is used 
to simultaneously solve equations (1)-(3). The numerical 
formulation and solution of the problem is beyond the scope of 
this paper, and will be presented in a subsequent paper. The 
numerical results that are discussed in the next section are 
carried out using FlexPDE17, an advanced and highly flexible 
commercial PDE solver.  The main kernel in FlexPDE 
includes a state-of-the-art, 2D and 3D Galerkin finite element 
methods with several options for choosing the basis functions, 
along with a very sophisticated grid generator, dynamic grid 
refinement, and graphical displays. 
 
Proof-of-concept Examples 
Due to lack of real field data, we will illustrate FIAT on 
synthetic simulated “field” data. Assuming a “ground-truth” 
reservoir K-map, one can solve (1) under stressed 
(injection/production) P-BCs. P and Q are then selected in a 
few locations and serve as “field” measurements. Then FIAT 
is used to recover the entire K-map based on {P,Q} “field” 
measurements and K at well locations is directly taken from 
the K “ground-truth”. FIAT is tested under different 
conditions of data sampling and location, and for different K 
“ground-truth” maps. As a first case, a single high-K inclusion 
in a low-K background K-map is investigated. Case 2 is 
similar to case 1 introducing a smooth variation in K. A third 
case based on a stochastic K random field is investigated. 

Because the model is steady state and single phase, this 
investigation will determine only the spatial distribution of 
undersampling points (wells), which result in the detection of 
the target. The economic feasibility of the subsequent 
exploitation of the target will depend on the extent of the 
water encroachment in the target region, relative to the 
remainder of the domain, which is not simulated. The water 
encroachment certainly would necessitate an earlier detection 
than that for a domain in which the outer boundary condition 
is no-flow. This oversight is inconsequential however because 
the extent of encroachment relative to the progress of the 
exploitation is dependent on the permeability of the target. A 
relatively low-permeability domain/target yields both slow 
encroachment and high relative economic feasibility of wells 
exploiting the target. Under these conditions, a single-phase 
model is appropriate. A generalization of FIAT to unsteady 
state two-phase flow is ongoing and will be presented in 
subsequent papers. 

 
Case 1. The inversion and undersampling investigations are 
conducted on a synthetic semi-circular reservoir of 
approximately 7 miles diameter, having constant pressure 
(5,000 psi) on the outer boundary, and producing a single-
phase liquid from a 2-stage oil field development scheme from 
a single platform. The idea is to simulate the development 
history, and assist decision makers in optimizing the location 
of infill or production well locations. Each development stage 
is assumed to be producing at steady state. The sequence of 
development is shown in Figure 1 and illustrates the two 
stages. Sampling points are comprised of wells only. The first 
stage, I, consists of 8 near-platform wells (inner-ring). The 
final stage, II, completes the development at 20 wells (outer-
ring). The average well production is set at 6,370 b/d and the 
well pressures vary from 2,000 to 3,500 psi. A high 

permeability region on the eastern portion of the field is also 
depicted in Figure 2. Over the entire field the permeability 
varies from 100 to 450 md. The principal goal of this 
investigation is to determine the number of wells and locations 
at which FIAT is able to identify the target region sufficiently 
to recommend its exploitation. The pressure field obtained by 
solving (1) with the “ground-truth” K is depicted in Figure 3.  

FIAT is applied using P, K, and Q at the wells. Internal 
domain pressure, permeability, and flux BCs are calculated at 
fictitious radii using equation (6), and will serve as new inner 
domain BCs. The permeability BCs on ∂Ω are allowed to vary 
and are not set to any specific value. Equations (1)-(3) are 
simultaneously solved for P and K. Figure 4 shows the inverse 
K distribution at development Stage-I. The well permeabilities 
range from 100 to 114 md. FIAT inverted K values also vary 
between 100 to 114 md. Clearly, the inner-ring of eight 
producing wells only hints that a higher permeability region 
exists toward the eastern side of the field. 

At the development Stage-II, 12 more production wells 
were added for a total of 20 wells. K was inverted and 
contoured using FIAT (Figure 5). In this run, K varies from 
100 to 175 md and K is clearly increasing to the east. The 
increased flux into the easternmost wells was extrapolated into 
the eastern portion of the field to values around 145 md, 
whereas in the western part of the field, the values are 
approximately 100 md. At the end of Stage-II, we have still 
not sampled nor estimated the full range of original K (100 to 
450 md). However, the inversion of K displays an increasing 
trend to the east as demonstrated in Figure 6, which magnifies 
the southeast portion of Figure 5. Clearly, Figure 6 shows an 
increasing trend of high K to the southeast. 

Finally, to enhance subsurface reservoir characterization, 
three new wells in the southeastern portion of the field were 
added totaling 23 wells (only one additional well, properly 
located, may suffice to identify the high-K lens). Inversion 
results are presented in Figure 7. As expected, the estimated K 
ranges from 100 to 400 md thus resolving a greater portion of 
the K “ground-truth” distribution. Not surprisingly, one of the 
three new wells sampled a part of the K field at 440 md. FIAT 
could be used to assist decision-makers in optimizing the 
location of production wells in their efforts to achieve more 
cost-effective exploration and exploitation.  
 
Case 2.  The same domain is used except that the true K field 
has a sharp interface and a high region, again on the eastern 
side of the field, Figure 8a. Values of the true K field range 
from 100 to 450 md. Figure 8b depicts FIAT calculated K 
values. These estimates obtain the same original range because 
one of the 20 wells falls close to the high K zone and the sharp 
change in K in the western portion of the field is discernible. 
The abrupt change in K is extrapolated correctly to the north 
and south outside the well control. 
 
Case 3.  In this case, the true k field is statistically generated 
and ranges from 60 to almost 700 md. Most of the field is 100 
to 450 md with a high in the northern part of the field and a 
low k (< 100 md) region in the southeast and southwest, 
Figure 9a. Figure 9b depicts the FIAT k estimate from the 20 
well data set case. The resulting contour plot in general 
maintains the features and trends of the true k-field; however, 
the high region is not discernible. The low k bodies are not 



SPE 71600 FORWARD-INVERSE ADAPTIVE TECHNIQUES FOR RESERVOIR CHARACTERIZATION AND SIMULATION 5 

well captured even though some of the wells sample close to 
them. This is mainly due to the discrepancy between the scale 
of heterogeneities (integral scale) and the mesh size. Indeed, if 
the size of the griddling mesh and the distance between the 
sampling well are larger than the heterogeneity integral scale, 
FIAT reproduces a spatially smoother solution than the actual 
permeability field. Clearly, high spatial frequency variations 
are not captured with a 20 well data set. 
 
Summary and Conclusions 
The approach presented here simultaneously solves the 
forward and inverse PDEs coupled through filtered pressure 
gradients. This approach is called Forward-Inverse Adaptive 
Technique (FIAT), which employs an implicit scheme with 
adaptive-grid, Galerkin, numerical techniques. Results from 
three synthetic test cases are presented where; P, K, and 
production, Q data exist only at producing wells. The results 
are preliminary but the algorithm successfully inverts K away 
from the wells. Results demonstrate attainable and reasonably 
accurate solutions. More importantly, these results provided 
enhanced insight into the consequences of data undersampling.  
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 Figure 1: Sysnthetic semi-circular reservoir. Horizontal cross-

section. 20 infield wells, 8 inner ring, and 12 outer-ring are 
depicted. Figure shows the initial finite element mesh. Higher 
density mesh reflects well locations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Ground-truth permeability field (case 1). K varies between 

100 and 480md. Pressure boundary conditions are also 
presented.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Pressure field obtained by solving the forward problem. 

Black dots represent finite-radius well locations. Pressure, 
permeability and fluxes at those locations are considered field-
measurement data for FIAT. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: Stage I (8 infield wells) FIAT results. Permeability k is 

depicted.  Permeability values vary between 103 and 114 md. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    Figure 5: Stage II (20 infield wells) FIAT results. Permeability k is 

depicted. Permeability values vary between 95 and 175 md. 
White circles around the wells represent flux features (ρQ) to 
evaluate flux constraints using equation (5). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: Zoom of the southeast portion of Figure 5. It clearly shows 

an increasing trend of K toward the southeast. More wells are 
needed for a final characterization stage. 
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Figure 7: FIAT final stage development (23 wells). K is depicted with 

values varying between 90 and 440 md. Clearly FIAT recovered 
the high-K target within 8% error. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8a: Case 2. Ground-truth permeability field 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8b: Case 2. Permeability inversion. Clearly, FIAT recovered 

the main features of the ground-truth permeability field. The 
abrupt changes in k are discernible. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9a: Stochastic realization of a K-field. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9b: K-inversion using FIAT. 
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